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Abstract 
    An analytical equation of state by Song and Mason is developed to calculate the PVT properties of 
mercury. The equation of state is based on the statistical-mechanical perturbation theory of hard convex 
bodies and can be written as a fifth-order polynomial in the density. There exists three temperature-
dependent parameters in the equation of state; the second virial coefficient, an effective molecular volume, 
and a scaling factor for the average contact pair distribution function of hard convex bodies. The 
temperature-dependant parameters have been calculated using corresponding-states correlations based on the 
heat of vaporization and the liquid density at the melting point. The average absolute deviation for the 
calculated density of mercury in the saturation and compressed state is 0.38 . 
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Introduction 
    One of the heaviest transition metals, 
known as quicksilver, with many unique 
properties and applications, is mercury. This 
metal has been used in many household, 
medical, and industrial products. A few 
examples are its applications in fluorescent 
and high intensity discharge lamps, old 
alkaline batteries and some button batteries, 
fungicides for seeds and turf, thermometers, 
dental amalgam, chemistry sets, older toys 
and games, thermostats, electrical switches, 
catalysts in industrial plants, and its ability to 
form organic species that are particularly 
stable in organic liquids [1]. 
    Accurate knowledge of the density of 
mercury is essential, because of its use as a 
pressure exerting medium. In fact, there is a 
large amount of experimental and theoretical 
works on the density and thermodynamic 
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parameters of mercury in the literature [2-9]. 
A critical review on the thermophysical 
properties of mercury is given by Holmen and 
ten Seldam [10]. Due to the difficulties in 
obtaining experimental data, especially at 
high temperatures and high pressures, there is 
a large demand on theoretical methods to 
predict the P-V-T properties and other 
thermodynamic properties of mercury.  
    Recently molecular simulation methods 
[11,12] have been applied to calculate the 
equilibrium and transport properties of 
mercury. Although very accurate in nature, 
molecular simulation methods are 
computationally expensive and need accurate 
potential energy functions for this purpose. 
For example, in the previous works by Raabe 
et al. [12,13] on the molecular dynamic 
simulation of mercury they showed that even 
very accurate ab initio potential energy 
functions [14,15] can’t well reproduce the 
properties of liquid mercury, therefore they 
added a term due to the many-body 
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interactions to correct for it. 
    Prediction of the properties of the liquid 
phase using correlation schemes is another 
method, which is widely used in the case of 
pure fluids and fluid mixtures. Recently 
Eslami [8,9] has developed corresponding 
states correlations to predict the liquid density 
of metals, including mercury, in the saturation 
and compressed states. These methods, 
however, can predict the liquid density but do 
not show the gas-liquid continuity. Equations 
of states are other well-known methods for 
the prediction of the thermodynamic 
properties. Mehdipour and Boushehri [16] 
have applied a statistical-mechanical equation 
of state [17] to calculate the PVT properties 
of mercury at saturation states. Their 
calculations are restricted to the saturation 
states, and obviously low to moderate 
pressures. It is the purpose of this paper to 
develop a statistical-mechanical equation of 
state by Song and Mason [18] to mercury 
over a wide range of temperatures and 
pressures. It is predicted the equation of state 
for mercury from heat of vaporization and the 
liquid density at the melting point as scaling 
parameters which, as we will show it can 
correlate and predict the thermophysical 
behavior of mercury over a wide range of 
temperatures and pressures. 
   
Theoretical Equation of State 
    Song and Mason [18] proposed an 
analytical equation of state for convex-
molecular fluids based on statistical-
mechanical perturbation theory. The equation 
of state is: 
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where P is the pressure, ρ is the molar 
(number) density, B2(T) is the second virial 
coefficient, α(T) is the contribution of the 
repulsive forces to the second virial 
coefficient, G(η) is the average pair 
distribution function at contact for equivalent 
hard convex bodies, η is the packing fraction, 
and kT is the thermal energy per one 
molecule. Song and Mason [18] adopted the 
following form for G(η), which is shown to 

be accurate for hard convex bodies [18,19]. 
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In equation 2, γ1 and γ2 are chosen to 
reproduce the correct third and fourth virial 
coefficients. In practice γ1 and γ2 can be 
approximated in terms of a single 
nonsphericity parameter γ, equal to unity for 
hard spheres. The parameters γ1 and γ2 have 
been defined in terms of γ as [18] 
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the packing fraction, η, is given by 
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where b is the van der Waals co-volume and 
can be defined in terms of α as [18]: 
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    Once the intermolecular potential energy 
function is known, the temperature-dependent 
parameters B2(T), α(T), and b(T) can be 
found by three integrations, and γ is the best 
found by fitting available P-V-T data [18]. 
    The second virial coefficient B2(T) has a 
central role in the equation of  state, Eq. (1); it 
is used both directly and as the source of a 
scaling constant for calculation of α(T) and 
b(T) [18]. In fact B2(T) is used to determine 
the Boyle parameters, the Boyle volume and 
temperature, and it is shown that when 
reduced in terms of the Boyle volume α(T) 
and b(T) are universal functions of the 
reduced temperature [20]. This means that 
one can also use experimental values of B2(T)  
over a wide range of temperatures to 
determine the Boyle parameters, and hence 
α(T) and b(T), but accurate potential energy 
function for the calculation of B2(T) are 
scarce. Although some nearly accurate ab 
initio pair potentials, are reported in the 
literature for mercury, Raabe et. al. [12] in 
their extensive molecular dynamics 
calculation have shown that even these 
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potentials can not be used to calculate PVT 
properties for high-density vapor and liquid 
mercury. They showed that due to strong 
many-body interactions in mercury, it is 
essential to add an additional term to 
incorporate these interactions. In these 
circumstances, fortunately, there are some    
corresponding-states methods by which the 
second virial coefficients and the other two 
temperature-dependent parameters can be 
calculated with reasonable accuracy [21-25]. 
    In these methods we need two scaling 
constants, one to reduce the second virial 
coefficient and one to reduce the temperature. 
In the conventional law of corresponding-
states the critical temperature and the critical 
volume are used for this purpose, but the 
critical parameters of metals are either scarce 
or not measured accurately due to the 
experimental difficulties at the critical point. 
Recently [21] it is shown that using the liquid 
density at an specified point like the normal 
boiling point and the surface tension or the 
heat of vaporization, as energy parameters, to 
reduce the temperature, one can generate 
universal plots of the reduced second virial 
coefficient versus the reduced temperature.  
    Boushehri and Mason [24] chose the heat 
of vaporization divided by R as the 
temperature parameter to reduce the 
temperature and the liquid density at the triple 
point to reduce the second virial coefficients. 
They proposed the following correlation for 
the prediction of the second virial 
coefficients: 
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    Song and Mason [20] showed that the 
reduced temperature-dependant parameters, 
α(T) and b(T), are universal functions of the 
reduced temperature when reduced in terms 
of the Boyle parameters. Also they showed 
that α(T) and b(T) are relatively insensitive to 
the detail of the potential energy function 
[20]. Therefore, they proposed two empirical 
formulas for reduced α (T) and b(T) in terms 
of the reduced temperature. 
    We employed the same empirical formulas 
proposed by Song and Mason [23] and 

rescaled the coefficients of the formulas to 
consider the effect of changing the scaling 
constants from the Boyle parameters to heat 
of vaporization and the liquid density at the 
melting point, i.e 
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     (9) 
where  a1=-3.688, a2=0.4126 

c1=4.1163, c2=1.7518 
    In this work we apply the equation of state, 
Eq. 1, with the temperature-dependent 
parameters determined using the 
corresponding-states correlation based on heat 
of vaporization and the liquid density at the 
melting point as scaling constants, Eqs. 7-9, 
to determine PVT properties of mercury over 
a wide range of temperatures and pressures.  
 
Results  
    We have employed Eq. 1, together with 
correlation equations, Eqs. 7-9, to calculate 
the saturated and compressed liquid density of 
mercury over a wide range of temperatures 
and pressures.  
    The values of input parameters for 
calculating the temperature-dependant 
parameter, α(T) and b(T), are reported in 
Table 1. Putting the value of γ=1 as for 
spherical particles, it gives the liquid density 
of mercury. The saturation liquid densities are 
reported in Table 2, and are compared with 
experimental data and with the predictions 
from literature [16]. The calculated results for 
gas densities and comparison with 
experimental data [16] are reported in Table 
3. The method has also calculated the 
compressed liquid density of mercury over a 
wide range of pressures. The results are 
compared with experimental data [10] in 
Table 4. 
 
Conclusion 
    Comparison of our calculated densities in 
Table 2, 3 and 4 with experiment [10, 26] 
show that the present equation of state can 
well reproduce the density of mercury over a 
wide range of temperatures and pressures. 
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There is no need to know accurate potential 
energy function, or to know the values of the 
critical constants for the calculation of the 
second virial coefficients. The temperature-
dependant parameters can be calculated using 
simple scaling constants, which are readily 
available.   
    Our results in Table 2 show that the present 
equation of state predict PVT properties of 
mercury over a wider range of temperatures 
and pressures and is more accurate than the 
previous equation of state [16]. 
    Although the empirical formulas for α and 
b, Eqs. 8, 9, are originally presented by Song 

and Mason [23] based on fitting the results for 
a Lennard-Jones potential, these equations 
still predict good results for PVT properties of 
mercury, for which the Lennard-Jones 
potential is not valid. This is because of the 
fact that the temperature dependant 
parameters, α(T) and b(T), are insensitive to 
the details of the potential energy functions 
and are just obtainable from the repulsive 
branch of the potential, or as it is described in 
this work by knowing just to readily available 
scaling constants. 
 

 
Table 1. The values of input parameters for mercury 

∆Hvap  [J.mol-1] ρm [mol.L-1] γ 

60055.02 68.25 1.0 

 
Table 2. The calculated results for the saturated liquid density of mercury compared with experiment [26] 

and with the predictions from our previous equation of state [16]. 

Dev(%) 
T(K) P(bar) ρexp(mol.m-3) 

ρcal.(mol.m-3) This work  Ref. 16 
273.15 2.73×10-7 67768.46 67971.83 0.30          1.65 
323.15 1.79×10-5 67157.72 67344.15 0.28          3.2 
373.15 3.75×10-4 66554.11 66673.27 0.18          4.11 
423.15 3.78×10-3 65955.69 65997.45 0.06          4.39 
473.15 2.32×10-2 65360.5 65339.33 -0.03         4.2 
523.15 9.96×10-2 64766.56 64709.7 -0.09         3.33 
573.15 3.30×10-1 64171.78 64110.45 -0.1           2.02 
623.15 8.99×10-1 63574.1 63537.39 -0.06         0.22 
673.15 2.10 62970.94 62980.34 0.01          -2.04 
723.15 4.36 62360.3 62425.25 0.10          -4.61 
773.15 8.22 61741.69 61853.51 0.18 
823.15 14.3 61108.62 61241.03 0.22 
873.15 23.5 60465.58 60557.15 0.15 
923.15 36.4 59807.59 59761.1 -0.08 
973.15 54.0 59134.64 58795.84 -0.57 
1023.15 77.2 58446.74 57575.69 -1.49 
1073.15 107 57743.88 55956.79 -3.10 
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Table 3. The calculated results for the gas density of mercury compared with experiment [26].  
T(K) P(bar) ρexp(mol.m-3) 

ρcal.(mol.m-3) Dev(%) 
273.15 2.73×10-7 1.201×10-5 1.285×10-5 6.98 
323.15 1.79×10-5 6.628×10-3 6.647×10-4 0.27 
373.15 3.75×10-4 1.206×10-2 1.207×10-3 0.07 
423.15 3.78×10-3 1.072×10-1 1.074×10-1 0.21 
473.15 2.32×10-2 5.887×10-1 5.886×10-1 -0.01 
523.15 9.96×10-2 2.291 2.291 0.02 
573.15 3.30×10-1 6.935 6.941 0.08 
623.15 8.99×10-1 17.392 17.415 0.14 
673.15 2.10 37.743 37.811 0.18 
723.15 4.36 73.127 73.316 0.26 
773.15 8.22 129.605 129.910 0.24 
823.15 14.3 213.648 214.214 0.26 
873.15 23.5 332.336 332.888 0.17 
923.15 36.4 492.548 492.890 0.07 
973.15 54.0 701.610 700.466 -0.16 
1023.15 77.2 966.253 962.006 -0.44 
1073.15 107 1293.405 1282.907 -0.81 
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Table 4. The calculated results for the compressed liquid density of mercury compared with experiment [26]. 
T(K) P(bar) ρexp(mol.m-3) ρcal.(mol.m-3) Dev(%) 

293.15 0 67523.254 67808.353 0.42 
293.15 500 67657.146 67826.279 0.25 
293.15 1000 67789.043 67843.944 0.08 
293.15 1500 67918.997 67861.528 -0.08 
293.15 2000 68047.007 67879.036 -0.25 
293.15 2500 68173.122 67896.278 -0.41 
293.15 3000 68297.443 67913.868 -0.56 
298.15 0 67462.190 67745.643 0.42 
298.15 500 67596.680 67764.470 0.25 
298.15 1000 67729.226 67783.592 0.08 
298.15 1500 67859.778 67802.354 -0.08 
298.15 2000 67988.385 67821.031 -0.25 
298.15 2500 68115.099 67839.432 -0.40 
298.15 3000 68239.918 67858.179 -0.56 
303.15 0 67401.176 67682.163 0.42 
303.15 500 67536.314 67702.579 0.25 
303.15 1000 67669.458 67723.670 0.08 
303.15 1500 67800.608 67742.661 -0.08 
303.15 2000 67929.814 67762.560 -0.25 
303.15 2500 68057.126 67782.177 -0.40 
303.15 3000 68182.493 67802.126 -0.56 
308.15 0 67340.212 67618.261 0.41 
308.15 500 67475.998 67639.851 0.24 
308.15 1000 67609.790 67661.235 0.08 
308.15 1500 67741.588 67682.511 -0.09 
308.15 2000 67871.342 67703.685 -0.25 
308.15 2500 67999.202 67724.572 -0.40 
308.15 3000 68125.118 67745.770 -0.56 
313.15 0 67279.298 67553.695 0.41 
313.15 500 67415.782 67576.613 0.24 
313.15 1000 67550.172 67599.345 0.07 
313.15 1500 67682.568 67621.961 -0.09 
313.15 2000 67812.970 67644.463 -0.25 
313.15 2500 67941.379 67666.678 -0.40 
313.15 3000 68067.843 67689.173 -0.56 
318.15 0 67218.484 67488.612 0.40 
318.15 500 67355.615 67512.919 0.23 
318.15 1000 67490.653 67537.056 0.07 
318.15 1500 67623.648 67561.066 -0.09 
318.15 2000 67754.599 67584.952 -0.25 
318.15 2500 67883.605 67607.551 -0.41 
318.15 3000 68010.6177 67632.392 -0.56 
323.15 0 67157.7688 67423.062 0.39 
323.15 500 67295.499 67448.819 0.23 
323.15 1000 67431.185 67474.419 0.06 
323.15 1500 67564.778 67499.879 -0.10 
323.15 2000 67696.326 67525.204 -0.25 
323.15 2500 67825.881 67550.245 -0.40 
323.15 3000 67953.492 67575.483 -0.56 
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